Combining Symbolic Cues with Sensory Input and Prior Experience in an Iterative Bayesian Framework

نویسندگان

  • Frederike H. Petzschner
  • Paul Maier
  • Stefan Glasauer
چکیده

Perception and action are the result of an integration of various sources of information, such as current sensory input, prior experience, or the context in which a stimulus occurs. Often, the interpretation is not trivial hence needs to be learned from the co-occurrence of stimuli. Yet, how do we combine such diverse information to guide our action? Here we use a distance production-reproduction task to investigate the influence of auxiliary, symbolic cues, sensory input, and prior experience on human performance under three different conditions that vary in the information provided. Our results indicate that subjects can (1) learn the mapping of a verbal, symbolic cue onto the stimulus dimension and (2) integrate symbolic information and prior experience into their estimate of displacements. The behavioral results are explained by to two distinct generative models that represent different structural approaches of how a Bayesian observer would combine prior experience, sensory input, and symbolic cue information into a single estimate of displacement. The first model interprets the symbolic cue in the context of categorization, assuming that it reflects information about a distinct underlying stimulus range (categorical model). The second model applies a multi-modal integration approach and treats the symbolic cue as additional sensory input to the system, which is combined with the current sensory measurement and the subjects' prior experience (cue-combination model). Notably, both models account equally well for the observed behavior despite their different structural assumptions. The present work thus provides evidence that humans can interpret abstract symbolic information and combine it with other types of information such as sensory input and prior experience. The similar explanatory power of the two models further suggest that issues such as categorization and cue-combination could be explained by alternative probabilistic approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Soft-Input Soft-Output Target Detection Algorithm for Passive Radar

Abstract: This paper proposes a novel scheme for multi-static passive radar processing, based on soft-input soft-output processing and Bayesian sparse estimation. In this scheme, each receiver estimates the probability of target presence based on its received signal and the prior information received from a central processor. The resulting posterior target probabilities are transmitted to the c...

متن کامل

A Bayesian approach for image denoising in MRI

Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...

متن کامل

A Note on Evolutionary Rate Estimation in Bayesian Evolutionary Analysis: Focus on Pathogens

Bayesian evolutionary analysis provide a statistically sound and flexible framework for estimation of evolutionary parameters. In this method, posterior estimates of evolutionary rate (μ) are derived by combining evolutionary information in the data with researcher’s prior knowledge about the true value of μ. Nucleotide sequence samples of fast evolving pathogens that are taken at d...

متن کامل

Bayesian multisensory integration and cross-modal spatial links.

Our perception of the word is the result of combining information between several senses, such as vision, audition and proprioception. These sensory modalities use widely different frames of reference to represent the properties and locations of object. Moreover, multisensory cues come with different degrees of reliability, and the reliability of a given cue can change in different contexts. Th...

متن کامل

Bayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data

This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012